

Deep Learning

02 Network of Perceptrons

Dr. Konda Reddy Mopuri Dept. of Artificial Intelligence IIT Hyderabad Jan-May 2024

Linear Classifiers: Shortcomings

- Lower capacity: data has to be linearly separable
- Some times no hyper-plane can separate the data (e.g. XOR data)

Pre-processing

Sometimes, data specific pre-processing makes the data linearly separable

श्रुर्वर्धेळा क्षेठ्वेंश्वेई क्रिड्व क्रिड्व के ठठ्ठुं क्रेट्र्व्ल्स्थान भारतीय प्रीद्योगिकी संस्थान हेंदराबाद Indian Institute of Technology Hyderabad

Pre-processing

- Sometimes, data specific pre-processing makes the data linearly separable
- ② Consider the xor case $\phi(\mathbf{x}) = \phi(x_u, x_v) = (x_u, x_v, x_u x_v)$

Pre-processing

- Sometimes, data specific pre-processing makes the data linearly separable
- ② Consider the xor case $\phi(\mathbf{x}) = \phi(x_u, x_v) = (x_u, x_v, x_u x_v)$
- 3 Consider the perceptron in the new space $f(\mathbf{x}) = \sigma(\mathbf{w}^T \phi(\mathbf{x}) + b)$

 $\textcircled{0} \ ({\sf Recap: Polynomial regression}): \ {\sf increasing the degree} \rightarrow {\sf increase the model capacity}$

- $\textcircled{1} \quad (\mathsf{Recap: Polynomial regression}): \text{ increasing the degree} \rightarrow \text{ increase the model capacity}$
- ② (Recap: Bias-Variance decomposition): to reduce the bias error, we increased the model capacity

- (Recap: Polynomial regression): increasing the degree \rightarrow increase the model capacity
- ② (Recap: Bias-Variance decomposition): to reduce the bias error, we increased the model capacity
- ③ Feature design (or pre-processing) may also be another way to reduce the capacity without affecting (or improving) the bias

• If we attempt to realize XOR function with a single perceptron

इग्ठेबिक्र क्षेण्डेंबिक्र क्षेण्ड्रे केठजू ट्रेन्ट्रेटम्झफ्ट भारतीय प्रोसोगिकी संस्थान इंवराबाव Indian Institute of Technology Hyderabad

• If we attempt to realize XOR function with a single perceptron

• Clearly, a single perception cannot represent the XOR function!

Let's see if multiple perceptions can do this induces where a second

• Consider 4 perceptions

Let's see if multiple perceptions can do this "the second

- Consider 4 perceptions
- $\rightarrow = -1$ and $\rightarrow = +1$

Let's see if multiple perceptions can do this induces where a second

Let's have these thresholds

Let's see if multiple perceptions can do this there are no the set of the set

- Let's have these thresholds
- Notice, each of them fire for exactly one specific input pattern

Let's see if multiple perceptions can do this "the second

• Let's now add another perceptron

Let's see if multiple perceptions can do this "the set of the set

• Connect the previous (hidden) ones and call it the output perceptron

Let's see if multiple perceptions can do this "the set of the set

• See if we can find a set of weights (W_i) to represent the XOR function

Let's see if multiple perceptions can do the second second

Let's see if multiple perceptions can do this there are no the set of the set

Let's see if multiple perceptions can do this there be a set of the set of th

• Clearly possible to find such weights \rightarrow represent the XOR function!

What about other 2-input Boolean functions?

• Possible to represent!

What about other 2-input Boolean functions?

- Possible to represent!
- Leads to finding a different set of non-contradicting weights

What if there are more inputs?

 $\bullet\,$ Can do the same with 2^n perceptions in the hidden layer and 1 in the output layer!

What did we just find?

• Any Boolean function of n inputs can be exactly represented with 2^n perceptions in the hidden layer and 1 in the output layer!

What did we just find?

- Any Boolean function of n inputs can be exactly represented with 2^n perceptions in the hidden layer and 1 in the output layer!
- Note that $2^n + 1$ is a sufficient but not necessary

What did we just find?

- Any Boolean function of n inputs can be exactly represented with 2^n perceptions in the hidden layer and 1 in the output layer!
- Note that $2^n + 1$ is a sufficient but not necessary
- Caveat: the size of the hidden layer grows exponentially!

Network of Perceptrons

• Generally referred to as MLP (Multi-Layered Network of Perceptrons)

Moving on from Boolean functions

•
$$y = f(x)$$
, where $x \in \mathcal{R}^n$ and $y \in \mathcal{R}$

Moving on from Boolean functions

- y = f(x), where $x \in \mathcal{R}^n$ and $y \in \mathcal{R}$
- Can MLPs represent such functions?

Threshold-ing is very harsh!

Perceptron's o/p is discontinuous!

$$\sigma(x) = \begin{cases} 1 & \text{ when } x \geq 0 \\ -1 & \text{ else} \end{cases}$$

Threshold-ing is very harsh!

Perceptron's o/p is discontinuous!

$$\sigma(x) = \begin{cases} 1 & \text{ when } x \geq 0 \\ -1 & \text{else} \end{cases}$$

2 Think of inputs -0.0001 and 0

Enough of Boolean functions!

1 Many real world problems have non-binary outputs

Enough of Boolean functions!

- 1 Many real world problems have non-binary outputs
- ② Perceptron only gives two outputs!

Enough of Boolean functions!

- 1 Many real world problems have non-binary outputs
- ② Perceptron only gives two outputs!
- ③ Sigmoid neuron

$$f(\mathbf{x}) = \frac{1}{1 + \mathbf{e}^{-\mathbf{w^T}\mathbf{x}}}$$

