# Deep Learning 

## 02 Network of Perceptrons

Dr. Konda Reddy Mopuri<br>Dept. of Artificial Intelligence IIT Hyderabad Jan-May 2024

## Linear Classifiers: Shortcomings

- Lower capacity: data has to be linearly separable
- Some times no hyper-plane can separate the data (e.g. XOR data)




## Pre-processing

(1) Sometimes, data specific pre-processing makes the data linearly separable

## Pre-processing

(1) Sometimes, data specific pre-processing makes the data linearly separable
(2) Consider the xor case

$$
\phi(\mathbf{x})=\phi\left(x_{u}, x_{v}\right)=\left(x_{u}, x_{v}, x_{u} x_{v}\right)
$$

## Pre-processing

(1) Sometimes, data specific pre-processing makes the data linearly separable
(2) Consider the xor case

$$
\phi(\mathbf{x})=\phi\left(x_{u}, x_{v}\right)=\left(x_{u}, x_{v}, x_{u} x_{v}\right)
$$

(3) Consider the perceptron in the new space $f(\mathbf{x})=\sigma\left(\mathbf{w}^{T} \phi(\mathbf{x})+b\right)$


## Pre-processing

(1) (Recap: Polynomial regression): increasing the degree $\rightarrow$ increase the model capacity

## Pre-processing

(1) (Recap: Polynomial regression): increasing the degree $\rightarrow$ increase the model capacity
(2) (Recap: Bias-Variance decomposition): to reduce the bias error, we increased the model capacity

## Pre-processing

(1) (Recap: Polynomial regression): increasing the degree $\rightarrow$ increase the model capacity
(2) (Recap: Bias-Variance decomposition): to reduce the bias error, we increased the model capacity
(3) Feature design (or pre-processing) may also be another way to reduce the capacity without affecting (or improving) the bias

## Consider the XOR function



Consider the XOR function

- If we attempt to realize XOR function with a single perceptron

| $x_{1}$ | $x_{2}$ | $\times O R$ |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\omega_{0}<0$ |
| 0 | 1 | 1 | $\omega_{2}+\omega_{0} \geqslant 0$ |
| 1 | 0 | 1 | $\omega_{1}+\omega_{0} \geqslant 0$ |
| 1 | 1 | 0 | $\omega_{1}+\omega_{2}+\omega_{0}<0$ |

Consider the XOR function

- If we attempt to realize XOR function with a single perceptron

| $x_{1}$ | $x_{2}$ | $\times 0 R$ |  |
| :--- | :---: | :---: | :--- |
| 0 | 0 | 0 | $\omega_{0}<0$ |
| 0 | 1 | 1 | $\omega_{2}+\omega_{0} \geqslant 0 \Rightarrow \omega_{2} \geqslant-\omega_{0}$ |
| 1 | 0 | 1 | $\omega_{1}+\omega_{0} \geqslant 0 \Rightarrow \omega_{1} \geqslant-\omega_{0}$ |
| 1 | 1 | 0 | $\omega_{1}+\omega_{2}+\omega_{0}<0 \Rightarrow$ |
|  |  |  |  |
|  |  | $\omega_{1}+\omega_{2}<-\omega_{0}$ |  |

## Consider the XOR function

- Clearly, a single perception cannot represent the XOR function!

Let's see if multiple perceptions can do this

- Consider 4 perceptions


Let's see if multiple perceptions can de this

- Consider 4 perceptions
- $\rightarrow=-1$ and $\rightarrow=+1$



## Let's see if multiple percentions can do this <br> Let's see if multiple perceptions can do this

- Let's have these thresholds



## Let's see if multiple perceptions can do this

- Let's have these thresholds
- Notice, each of them fire for exactly one specific input pattern



## Let's see if multiple perceptions can do this

- Let's now add another perceptron



## Let's see if multiple percentions can do this <br> Let's see if multiple perceptions can do this

- Connect the previous (hidden) ones and call it the output perceptron


Let's see if multiple perceptions can do thisi

- See if we can find a set of weights $\left(W_{i}\right)$ to represent the XOR function


Let's see if multiple perceptions can do this
$\qquad$



Let's see if multiple perceptions can do this
$\qquad$


| $x_{1}$ | $x_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $y$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 0 |  |
| 0 | 1 |  |  |  |  |  |
| 1 | 0 |  |  |  |  |  |
| 1 | 1 |  |  |  |  |  |

Let's see if multiple perceptions can do this
$\qquad$


| $x_{1}$ | $x_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 |  |
| 0 | 1 | 0 | 1 | 0 | 0 |  |
| 1 | 0 | 0 | 0 | 1 | 0 |  |
| 1 | 1 | 0 | 0 | 0 | 1 |  |

Let's see if multiple perceptions can do this $\qquad$


| $x_{1}$ | $x_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 | $\omega_{1}$ |
| 0 | 1 | 0 | 1 | 0 | 0 | $\omega_{2}$ |
| 1 | 0 | 0 | 0 | 1 | 0 | $\omega_{3}$ |
| 1 | 1 | 0 | 0 | 0 | 1 | $\omega_{4}$ |

Let's see if multiple perceptions can de this

| $x_{1}$ | $x_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $y$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 0 | $\omega_{1}+\omega_{0}$ |
| 0 | 1 | 0 | 1 | 0 | 0 | $\omega_{2}+\omega_{0}$ |
| 1 | 0 | 0 | 0 | 1 | 0 | $\omega_{3}+\omega_{0}$ |
| 1 | 1 | 0 | 0 | 0 | 1 | $\omega_{4}+\omega_{0}$ |


| $x_{1}$ | $x_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $y$ | $x O R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 | $\omega_{1}+\omega_{0}$ | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | $\omega_{2}+\omega_{0}$ | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | $\omega_{3}+\omega_{0}$ | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | $\omega_{4}+\omega_{0}$ | 0 |

Let's see if multiple perceptions can do this

| $x_{1}$ | $x_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $y$ | $\times O R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 | $\omega_{1}+\omega_{0}$ | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | $\omega_{2}+\omega_{0}$ | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | $\omega_{3}+\omega_{0}$ | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | $\omega_{4}+\omega_{0}$ | 0 |
|  | $\omega_{1}<-\omega_{0}$ | $\omega_{2} \geqslant-\omega_{0}$ | $\omega_{3} \geqslant-\omega_{0}$ | $\omega_{4}<-\omega_{0}$ |  |  |  |

Let's see if multiple perceptions can do this

- Clearly possible to find such weights $\rightarrow$ represent the XOR function!

| $x_{1}$ | $x_{2}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $h_{4}$ | $y$ | $\times 0 R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 | $\omega_{1}+\omega_{0}$ | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | $\omega_{2}+\omega_{0}$ | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | $\omega_{3}+\omega_{0}$ | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | $\omega_{4}+\omega_{0}$ | 0 |
|  | $\omega_{1}<-\omega_{0}$ | $\omega_{2} \geqslant-\omega_{0}$ | $\omega_{3} \geqslant-\omega_{0}$ | $\omega_{4}<-\omega_{0}$ |  |  |  |

- Possible to represent!
- Possible to represent!
- Leads to finding a different set of non-contradicting weights


## What if there are more inputs?

- Can do the same with $2^{n}$ perceptions in the hidden layer and 1 in the output layer!


## What did we just find?

- Any Boolean function of $n$ inputs can be exactly represented with $2^{n}$ perceptions in the hidden layer and 1 in the output layer!


## What did we just find?

- Any Boolean function of $n$ inputs can be exactly represented with $2^{n}$ perceptions in the hidden layer and 1 in the output layer!
- Note that $2^{n}+1$ is a sufficient but not necessary


## What did we just find?

- Any Boolean function of $n$ inputs can be exactly represented with $2^{n}$ perceptions in the hidden layer and 1 in the output layer!
- Note that $2^{n}+1$ is a sufficient but not necessary
- Caveat: the size of the hidden layer grows exponentially!


## Network of Perceptrons

- Generally referred to as MLP (Multi-Layered Network of Perceptrons)


## Moving on from Boolean functions

- $y=f(x)$, where $x \in \mathcal{R}^{n}$ and $y \in \mathcal{R}$


## Moving on from Boolean functions

- $y=f(x)$, where $x \in \mathcal{R}^{n}$ and $y \in \mathcal{R}$
- Can MLPs represent such functions?


## Threshold-ing is very harsh!

(1) Perceptron's o/p is discontinuous!

$$
\sigma(x)= \begin{cases}1 & \text { when } x \geq 0 \\ -1 & \text { else }\end{cases}
$$



## Threshold-ing is very harsh!

(1) Perceptron's o/p is discontinuous!

$$
\sigma(x)= \begin{cases}1 & \text { when } x \geq 0 \\ -1 & \text { else }\end{cases}
$$


(2) Think of inputs -0.0001 and 0

## Enough of Boolean functions!

(1) Many real world problems have non-binary outputs

## Enough of Boolean functions!

(1) Many real world problems have non-binary outputs
(2) Perceptron only gives two outputs!

## Enough of Boolean functions!

(1) Many real world problems have non-binary outputs
(2) Perceptron only gives two outputs!
(3) Sigmoid neuron

$$
f(\mathbf{x})=\frac{\mathbf{1}}{1+\mathbf{e}^{-\mathbf{w}^{\mathbf{T}} \mathbf{x}}}
$$

Basic Sigmoid Function


