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Linear Classifiers: Shortcomings

Lower capacity: data has to be linearly separable
Some times no hyper-plane can separate the data (e.g. XOR data)
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Pre-processing

1 Sometimes, data specific pre-processing makes the data linearly
separable

2 Consider the xor case
ϕ(x) = ϕ(xu, xv) = (xu, xv, xuxv)

3 Consider the perceptron in the new space f(x) = σ(wT ϕ(x) + b)
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Pre-processing

1 (Recap: Polynomial regression): increasing the degree → increase the
model capacity

2 (Recap: Bias-Variance decomposition): to reduce the bias error, we
increased the model capacity

3 Feature design (or pre-processing) may also be another way to reduce
the capacity without affecting (or improving) the bias
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Consider the XOR function
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Consider the XOR function

If we attempt to realize XOR function with a single perceptron
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Consider the XOR function

Clearly, a single perception cannot represent the XOR function!

Dr. Konda Reddy Mopuri dl -02/Network of Perceptrons 8



Let’s see if multiple perceptions can do this

Consider 4 perceptions

→ = −1 and → = +1
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Let’s see if multiple perceptions can do this

Let’s have these thresholds

Notice, each of them fire for exactly one specific input pattern
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Let’s see if multiple perceptions can do this
Let’s now add another perceptron
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Let’s see if multiple perceptions can do this
Connect the previous (hidden) ones and call it the output perceptron
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Let’s see if multiple perceptions can do this
See if we can find a set of weights (Wi) to represent the XOR function
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Let’s see if multiple perceptions can do this
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Let’s see if multiple perceptions can do this

Clearly possible to find such weights → represent the XOR function!
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What about other 2-input Boolean functions?

Possible to represent!

Leads to finding a different set of non-contradicting weights
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What if there are more inputs?

Can do the same with 2n perceptions in the hidden layer and 1 in the
output layer!
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What did we just find?

Any Boolean function of n inputs can be exactly represented with 2n

perceptions in the hidden layer and 1 in the output layer!

Note that 2n + 1 is a sufficient but not necessary
Caveat: the size of the hidden layer grows exponentially!
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Network of Perceptrons

Generally referred to as MLP (Multi-Layered Network of Perceptrons)
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Moving on from Boolean functions

y = f(x), where x ∈ Rn and y ∈ R

Can MLPs represent such functions?
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Threshold-ing is very harsh!

1 Perceptron’s o/p is discontinuous!

σ(x) =
{

1 when x ≥ 0
−1 else

2 Think of inputs -0.0001 and 0
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Enough of Boolean functions!
1 Many real world problems have non-binary outputs

2 Perceptron only gives two outputs!
3 Sigmoid neuron

f(x) = 1
1 + e−wTx
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